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ABSTRACT

This paper deals with systems of singularly perturbed ordinary
differential equations posed as boundary value problems on an infinite
interval. The system is assumed to consigt of singularly perturbed
(fast) components and unperturbed (slow) components and to have a
singularity of the second kind at %®. Under the assumption that there
is no turning point we derive uniform asymptotic expansions (as the
perturbation parameter tends to zero) for the fast and slow components
uniformly on the whole infinite line. The second goal of the paper is
to derive convergence estimates for the solutions of 'finite' singular
perturbation problems obtained by cutting the infinite interval at a
finite (far out) point and by substituting appropriate additional
boundary conditions at the far end. Using a suitabl~ choice for these
boundary conditions the order of convergence is shown to depend only on
the decay property of the infinite solution. P .
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SINGULAR PERTURBATION PROBLEMS
WITH A SINGULARITY OF THE SECOND KIND

PETER A. MARKOWICH' anD CH. A. RINGHOFER"

1. INTRODUCTION

In this paper we deal with the singular perturbation problem

Accession For

NTIS Grasl
DTIC 743
Unannouucsd

a
(1.1) €y' = t h(y,z,t,€)
a>=-1, te (1,%)

a T d 2 @y
(1.2) z2' = ¢ g(y,z't‘e) JhuLAJ,Cﬂtiol}'..._, . ——

| Distribution,

Y .
(z) e c([1,%]): <==> (‘z’) e c([1,%)) and _Avallubiliey Gos. s

Avail ang T
(1.3) Dist | spoc1al/0r i
lim y(t,€)y _ (y(®,€) (. ' | :
g z(t,e)) = (z(“,e)) is finite 1 ; 4
] i
(1.4) F(E)(y(1'e)) = B(€) INSPECTED

z(1,€)

where 0 < € << 1; y,h are n-vectors z,g are m-vectors. y is called fast

component and z is called slow component. F(€) is a k X (n+m) matrix,

B(e) e lF where k < ntm holds if the matrix
iy
NE
(1.5) 3(§) ‘Y(.'C)JZ("oC)r‘”'E)

has at least one eigenvalue with positive real part. For & > 1 the system

{1.1), (1.2) has a singularity of the second kind of t = @,
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For this we use techniques already developed for 'finite' singular
perturbation problems as for example matched asymptotic expansions (see
O'Malley (1978), (1979), Ringhofer (1980), (1981)) and the theory of singular
boundary value problems (see de Hoog and Weiss (1980a,b), Markowich
(1980a,b,c) and Lentini and Keller (1980)).

We show that the solutions y,z of (1.1), (1.2), (1.3), (1.4) fulfill

(1.9) z(t,e) = z(t) + O(E), te [1,”]
(1.10) yiee) =o(5E2) + ey +0(e),  te 1,

where ;,; are solutions of (1.1), (1.2}, (1.3) with € = 0 (reduced
problem) fulfilling appropriate boundary conditions. Here o(T) decays
exponentially to zero as T * ® (boundary layer term) and ;,; decay to a
finite limit z,,y, as t > ® fulfilling

(1.11) 0 = h(Yu,Z,,®s0)

(1.12) 0 = g(YurZegr™e0)e
This result generalizes the results by 0O'Malley (1979) and Ringhofer (1980),
(1981) obtained for finite interval singular perturbation problems.

Singularly perturbed initial value problems on the infinite line have
been investigated by Hoppensteadt (1966) by imposing severe stability
assumption on the reduced problem.

The second goal is to study approximating 'finite' singular perturbation
problems, which are set up by cutting the infinite intetval‘ [1,”] at a
finite point T >> {1 and by substituting (for the continuity condition (1.3)
at t = *®) additional, so called asymptotic boundary conditions obtaining a
'finite' singqular perturbation problem
(1.13) eyh = th(y, z,t,€)

1€ <

a
' .
(1.14) 2 t g(yT.th,e)




+ M~
where S(T,€) is an (n+m-k) X (n+tm) matrix, Y(T,€) € RP ™ k. The condition

(1.16) shall reflect the asymptotic behaviour of the ‘infinite' solution
(yv,z) as t * =,

'Finite' approximating two point boundary value problems (for unperturbed
infinite problems) have been studied extensively by de Hoog and Weiss (1980a),
Markowich (1980b) and Lentini and Keller (1980).

We show that under rather mild assumptions on the 'infinite' problem (a
certain 'wellposedness' is required) there is a choice of S(T,e) £ 8 and

Y(T,€) ZY only depending on the reduced (€ = 0) infinite problem such
that the 'finite' (perturbed) problem has a unique solution Ype2zp for T
sufficiently large and € sufficiently small {({but T and € independent)
which fulfills the convergence estimate
a+1)

+€), ¢>0

Y=y,
(1.17) '(z-zT)&1,T] < const(exp(- ;%T T
T

(1 denotes the sup-norm on [a,b]) where the constants are independent

a,m)
of T and E.

The 'finite' singular perturbation problem (1.13), (1.14), (1.15), (1.16)
can then be solved by polynomial collocation methods (see Kreiss and Nichols
(1975), Ringhofer (1981), Ascher and Weiss (1981)). An exponential mesh size

strategy for 'long interval' problems has been developed for the Box-scheme by

Markowich and Ringhofer (1981). This can be used on [&,T], w > 1 while

within the boundary layer (on [1,1+0(€|2ne|)]) a very fine grid (see Ascher. and

g~




Weiss (1981)) has to be used. Since the solution of (1.13), (1.14), (1.15),
(1.16) is smooth (has uniformly (in €) bounded derivatives) on [1+0(&|%ne|),w]
standard techniques can be used there.

The paper is organized as follows. In chapter two linear constant
coefficient problems are treated, in chapter three variable coefficients are

admitted and chapter four is concerned with nonlinear problems.

v-—v—-v\_r—v—v e

) ] HUREA - . Tl NG U
. N . — e e e e ———— et~ n e o - - RIS, . '
. 1 - e
- - P N P W o —




2. Constant-Coefficient Problems.

At first we study the problem

(2.1) ey' = 2ale)y + t¥B(e)z + t%(t,¢)
1€ tem
(2.2) z' = t“C(e)y + tGD(e)z + taq(t,e) @ > -1
y(i,e) _
(2.3) F(e)[z("e’) = B(e)
(2.4) (Z) € c([1,%]).

Here vy,f are n-vectors, 2z and g are m-vectors, Ale) is an nxn-
matrix, B(€) an mnXm-matrix, C(e¢) an mxn-matrix and D(€) is an mxm~
matrix. The dimension of the matrix F(e€) and the vector B(e) will be
discussed in the sequel (obviously F(€) has n+m columns). We assume that
(2..5) f,g € C({1,#] x [o,eo]), €y > 0

(2.6) A,B,C,D,F,B & C([O,eo]).

and that A,B,C,D,f,q,F,8 are (uniformly) Lipschitz continuous at € = O,

It is convenient to decouple the system (2,1), (2.2) by a linear trans-
formation such that the unperturbed equation of the transformed system does

not contain the fast component. We use the transformation given by Ascher and

Weiss (1981):
y I O1ru
(207) (2) = [CL(E) I (V).

Agsuming that A-1(e) exists for € @ [O,EO] and that IA-1(e)I < const.
for & € [o,eo] we cetermine L(e) from the equation

(2.8) Lie) = C(€)A™ (e) - e(D(e)L(e)A~"(€) + L(e)B(eILIeIA™ (€)).




A simple contraction argument assures the unique solvability of (2.8) such
that
(2.9) L(E) = c(€)a"V(e) + o0(€)

holds. The new system (with u,v as dependent variables) has the form

(2.10) cu' = t7A(e)u + t7B(E)v + tOE(t,€)
(2.11) v = t%B(e)v + t%(t,€)
(2.12) (:) e c([1,*])

where A=A +€BL, D=D - 1B, g =g - Lf holds.

Now we make assumptions on the eigenvalues of A(0), D(0) = D(0) ~-
~c(0)a” ' (0)B(0):
A(0) has r, eigenvalues with positive real part and r_
(2.13) eigenvalues with negative real part (counting algebraic

multiplicities) and r,  + r_ = n.

(2.14) D(0) has ;+ eigenvalues with positive real part and

~

r_ eigenvalues with negative real part and ;+ + ;; = m,

We investigate the perturbed problem

(2.15) eu} = t“A(O)u1 + t"'n(e)v1 + t°f1(t,€)

(2.16) vi = £%B0v, + tl (t,€)
u

(2.17) (v1) e c([1,*]).

1

The assumptions (2.13), (2.14) guarantee that there are transformation
matrices E,s, E, such that the matrices J,, J, defined by

-1 - -1
(2.18) (a) A(0) = EJ.E (b) D(0) = EszEz

111

are in block diagonal form:

-7-




(a) J, = ' (b) J, = o

(2.19) 1 0 a; 2 L 0 5 J
&..,._4‘:‘_/
r, ?_ r, r_

+ _+
where J_,J

1795 (J:,J;) only have eigenvalues with positive (negative) real

parts. We substitute

u1 E1 0 w
(2.20) (V=0 g1C)
1 2
and get
(2.21) cw' = :°J1w + t¥B(e)x + t°?1(t.€)
(2.22) x' = t“azx + t“;‘(t,e)
(2.23) (:) e c([1,2])

~ -1 ~ -1 ~ -1
where B(€) = B1 B(E)Ez, f1 E1 f1, 9, Ez 9, holds. We solve (2.22),

(2.23) defining

tu+1__6¢:+1

(2.24) #(t,8) = exp(—=—— a1 Jz)

such that for the slow component

(2.25) x(t,E) = ¢(t,1) £+ (n131(-.e))(t)

I~
r

r
holds where £ € C~  and the solution operator H6 for 6 > 1 is defined by

(Hgg(*,€))(t) = [So(t,8)D, 67" (s,818% (s, )8 +
[ J
(2.26)

+ gtO(t,5)5_¢-1(8,5)sag(s,e)ds.

s ——— -  em e ia e e e o = e




Here s+,D_ are diagonal projections
I
(2.27) (a) D = ’ (b) D = .

H5 was used by de Hoog and Weiss (1980a,b) and they showed

(2.28)(a) Hg = C({8,21) * c((,#]), 521

(2.28)(b) '“6'[5 ] < const. independently of §
’

(2.28)(c) (HgE(*,€)) (™) = -J;'f(w.e).

Estimates of the asymptotic behaviour of (Hsf)(t) as t * ® are given in
Markowich (1980a).
Inserting (2.25) into (2.21) we can regard h(t,€) = B(€)x(t,e) +

+ f1(t,€) as inhomogenity and are left with solving for the fast component:

(2.29) ew' = taJ1w + ¢ hie,e),  we (i1,
We define

ta+1 - 6“*1
(2.30) ¥(t,8,6) = exp( e(a+t) J1)

(G, she*,€1)(t) = [o(t,8,6)p 97 (s,8,6)8 (s, c)as +
’ @

(2.31)
+ ftW(t.6.8>D_¢"(s,G.e)s°h(s.e)ds
§
where
T, (o
(2.32) (a) D, = olr () D_ =L .

holds. Then the solution of (2.29)}) is

(2.33) wit,€) = vee 1,00 0 '1c + (G, h(*,€))(t)

L

for L ecC ~.

T D




It is easy to show that Ge 5 has the following properties:
’

(2.34)(a) G, g &t CLIS, ™) * c((8,21), 8219
4
(2.34)(b) |Ge 5.[6 . € const. independently of §,¢
’ ’
-1
(2.34)(c) (Ge'dh(’,c))(°) = “J1 h(®,€).

' (t,€
If h(-*,€), E—is‘—l € C([1,%]) for all € sufficiently small then

t
(2.34)(4) (Gg gh(*,€))(t) = -J;1h(t,€) + W(t:5,€)D_J;1h(Go€)
’
+ G(Ae'ch(',e))(t)
where
L}
(2.35) 1 (h(s,e)l < const (Ih{+,)1 + max 1RLE.E))
€,$ [6,=) (8,~}
se[61~] S
holds. In the sequel we use the space
(2.36) cl(8.21) = c(16,21) a c' (8,20 n {£] max 1548)) ¢ w),
a a
se[§,®] 8

a a
and as norm we take Ifl = et + max [If'(s)/s 1.
[Gl“] [60“] selslo]

We rewrite (2.11) obtaining
a- a - - a-
(2.37) v' = £t D(0)v + t (D(E) - D(O))v + t g(t,E), ¢t > 1
and get by integration (using (2.20), (2.25))

0
o &+ BB (Be) - Blonivis,ene) +

v(t,e) = E2¢(t'1) T
k|

(2.38)

-t=
+ Ez(H122 g(*.€))(t).

where Hl:C(ll,w]) -+ Ci([l,wl) is bounded.

-10-




We conclude from (2.28)(b) that (I - E2H1E;1(5(€) - 5(0))-1 =1 4+ 0(c) as an

operator on C({1,2]) such that(.
1 0 1=
» vit,e) = Ez¢‘t"’|r; £+ 0(€) + B (H,E;'T(-,€))(t) +

(2.39)

+ O(elg(=,e )N )

{1,°1

holds uniformly on [1,®2],. (The asymptotics for v'(t,e)/t? follow
immediately). Rewriting (2.10) gives

a a, = a a
(2.40) €u' = t A(O)u + t (A(e) - A(O))u + t B(e)v + t f(t,e), t?> 1

and we obtain (using (2.20), (2.33))

0 -1,= .
]c+n4%ng(uw-amnu,mu)+ ;

u&ﬂ)=gﬂhhﬂ@r

(2.41)
+ B (6, B (BIEIV( £) + £(o,0N)(E).

From (2.34)(b) we conclude that (I - E1G€'1E;1(i(8) - A(O)))“1 =1+ 0(c) as

operator on C({1,7]) such that

I

L (2.42) u(t,e) = E1¢v(t,1,e)[°:]c + 0(e)T +
r

-1
+ E (G, (E(BEIV(e,€) + £(+,€)))(¢) +

+ ole(Ww(e,e )} + VE(°,e)t

(1,2) (1,1

Resubstitution in (2.7) gives y,z. Since y,z depend on r + ;_ 1

parameters (§ and £) we assume that the matrix F(€) as in (2.3) has
r_+ ;_ rows. By collecting the terms of y,z which depend on £,[ we get i
Theorem 2.1, let f,n € q;([1f”]) uniformly for small € > 0 and assume

that the (r_ + T ) x (r_ + ;_)-matrix ¥

-11=




0 -1 -1 0
E‘[I ] E1D*E1 A (O)EZ[I""]
r_ r-
(2.43) F(0) o
0 32[~ ]
r—

-
is nonsingular. Then, under the given assumption on A, B, C, D, F,B the

boundary value problem (2.1), (2.2), (2.3), (2.4) has for all € sufficliently

~

r +r
small and for all B(e) € R a unique solution (z) which depends

uniformly continuous (in €) on B(€) and on f,g € C([1,%}) when regarded
1
as dwelling in C([1,®]). Moreover (Z) e c([6,)) for & > 1 depends

1
uniformly continuous on f,g€ C ({1,%]) and

0 -1
z(t,e) = 320(t01)[};;]5 + E,(H.E, (g(*,0)

(2.44)
- c(0)a” Y (0)1£(*,0)1)(t) + 0(€)
0 -1 =1
(2.45)  y(t,6) = s,wtn.e)([I ]: + 0_37 (] 'B(E)z(1,6) +
b g
: + B '£(1,€))) = 27 (0)(B(O)=(£,0) + £(£,0)) + O(€)

holds uniformly on [1,®].

From (2.28)(c), (2.34)(c) we derive
-1 - -
(2.46) z(®,e) = =(D(0) - C(0)A (0)B(0)) 1(9(“',0) = C(0)A 1(O)f(“.O)) + 0(€)

y(®,€) = =2~ (0)(B(0)z(*,0) + £(*,0)) + O(E).

-12=
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The first term in (2.45) is the exponentially decreasing boundary layer
contribution (the thickness of the boundary layer is 0(2]2ns|) and the second
term is the solution of the reduced problem (2.1) (with € = 0).
If we drop the restriction that 5(0) = D(0) - C(O)A-I(O)B(O) has no
eigenvalue on the imaginary axis (see (2.14)}) we have to assume that
f(t,e),qg(t,€) converge to zero algebraically as t * ®, A sufficient order
of decay is t-(°+1)r-y, where r is the dimension of the largest Jordan
block of 5(0) which has an eigenvalue on the imaginary axis and Y > 0 (see
Markowich (1980a)). For the contraction argquments algebraically weighted
C([1,2]) resp. C;([1,“]) spaces have to be used.
For the numerical solution of (2.1), (2.2), (2.3), (2.4) we cut the
infinite interval at a finite point T >> 1 and replace the continuity

requirement (2.4) by r, + ; boundary condition at t = T. These bovndary

+

conditions shall reflect the asymptotic behaviour of y,z as t * ®, So we

get the 'finite' singular perturbation problem

(2.48) eys, = t A(E)y,, + t B(E)z, + tOE(t,E)
. YT YT T ’
1¢e<r
a a a
(2.49) z& =t C(E)yT + t D(e)zT + t g(t,€)
Y,r(1oe)
(2.50) Feei,” 4 ¢y) = BE)
T
Yo (T,€E)
T
(2.51) svr,e)(z'r(.,'e,) = Y(T,€).

r +r
~ + 4+
Here S(T,€) is an (r+ + r+) X (ntm)-matrix and Y(T,€) € R .
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A possible choice is

-1 -1, -1
[1r+,0]15:1 [Ir+,0]E1 A" '(0)B(0)
(2.52) s = s(T,€) =
-1
0 1~ ,0|E
- [ir+_] 2 J
[z, ,0le7'a  or£(m,0)
r,
(2.53) Y{T) £ Y(T,€) = .

’ -1
-lIr ,0| B, 2(%,0)
[:r+ ] 2

This *asymptotic' boundary condition has been used by de Hoog and Weiss
(1980a), Markowich (1980b) and Lentini and Keller (1980) for unperturbed
problems on infinite intervals. Let JA{t,€) denote the fundamental matrix of
(2.1), (2.2) (M1,6)= I). Then by proceeding as de Hoog and Weiss(1980a) did

we can easily show that SA(T,€) does not contain exponentially decreasing

Y(T,€)) _
z(T,e)) 0

nentially increasing solution components of the homogenous problem (2.1),

terms. Therefore the countary condition s( sets the expo-

(2.2) to zero. Y(T) as in (2.53) is the necessary‘(boundary) correction term

for the inhomogenous problem.

By proceeding as in de Hoog and Weiss (1980a) we find the stability
estimate for the solution of (2.48), (2.49), (2.50), (2.51) when using S as

in (2.52) and assuming that the matrix (2.43) is nonsingular i

i

Y,

T
zT)unm < const(VB(EIN + IY(T, €)1 + ME(o, €)1, o+
(2.54)

+ lg(.pe)ll1’1‘]'




e

~ ~

r +r r +r

for a1l BEeR_ ~,yer* *?

, £, € C([1,T]) where the constant is
independent of T and E. By subtracting (2.48), (2.49), (2.50), (2.51)
from (2.1), (2.2), (2.3) we get the error estimate

Y-y, .
y(i.7)
(2.55) '(z_z:) n,m S constls(z(,r’e)] - Y(T)N.

Inserting (2.44), (2.45) into the right hand side of (2.55) (when using

(2.52), (2.53)) gqaives the uniform estimate
Y'YT

-1 . 1 .
I(z_zT '(1,T] < const(lEz(H1E2 (g(*,0) ~ C(O)A (0)f(*,0))(t)

(2.56)
- 2(®,0)1 + O(e)).

Convergence follows because (2.28)(c).

Since the solutions of the reduced problem (€ = 0) (2.48), (2.49) do
not generally fulfill (2.51) one has to expect a boundary layer at t = T
whose height can be estimated by the right hand side of (2.56).

Estimates of the order of convergence of the first term of the right hand
side of (2.56) depending on the decay of f,g as t + ® are given in

Markowich (1980a), (1980b).

Therefore under the given assumptions the asymptotic boundary condition
(2.51) can he consructed with respect to the reduced (¢ = 0) infinite

problem.
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3. Variable Coefficient Problems.

We consider the problem

(3.1) €y’ = tUA(t,E)y + t B(t,E)z + t £(t,€)
1€ ™
a a a a> -1
(3.2) z' = t C(t,e)y + t D(t,€)z + t g(t,€)
Y(1le) =
(3.3) F(€) (z(1'e)) B(€)
(3.4) (¥) e ccire=n
where the dimensions are as in Chapter 1 and assume that
(3.5) A,B,C,D,f,g € C({1,®] X loreoli r,8 e ¢( [oreol)

holds for some EO > 0 and that F,8,A,B,C,D,f,g are uniformly Lipschitz

continuous at € = 0.

Moreover we assume that the eigenvalues A(t) of A(t,0) split up into
two groups such that
{3.6) Re X,(t) 2 c.e***Re Xr (t) 2c,c >0, t21

+

(3.7) Re Xr+*1(t) < -c_,"‘,Reln(t) C-c_,c_>0,t 1 (n - r, = r_)
holds (eigenvalues are counted accoring to algebraic multiplicities) and that

there is a transformation to block form
A(t,0) = E(£)I(LIE (), J(t) = === ——=——=—

such that the eigenvalues of J+(t)kJ_(t) are X,(t),"',lr (t)
+

(Xr++1(t).--'.kn(t)) and

a -1.0
. 1 < .
(3.9) lEl[1'”] + 1 [1,%] const
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Under the assumptions (3.6), (3.7) and additional smoothness assumption on
A this transformation matrix E exists at least locally (everywhere in
{1,]1), but the assumption of the global existence is much more restrictive
(see O'Malley (1979)). At first we investigate
¢ . e® a
(3.10) Ey' = t A(t,€)y + t h(t,€), y € C([1,”})

and substitute

(3.11) y = E(t)x
obtaining
a a =1
(3.12) Ex' = £ 3(t)x + t (B ()(A(t,€) - A(t,0))E(t) -
—et % N eiEr (e ix + %8 N(eince, €
(3.13) x € C({1,%]).

Using a perturbation approach we first solve

a o
(3.14) €u’' =t J(tju + t a(t,e), u e c(f[r,*]).
According to (3.8) the system (3.14) splits up into

a
(3.14)(a) cuy = £, (thu+ t7a (£,8), u, e c((1,])

- (3.14)(b) ew = % _(tiu_ + e%a_(t,€), u_ e c([1,%]).
At first we analyse (3.14a), which we rewrite as

a a - a
(3.15)(a) €ul =t J ("Ja, + £ (T () =T (®"))u, + ¢t a . (t,€)

3 E (3.15)(b) u € c([1,%]).
We regard (3.15) as an inhomogeneous constant coefficient problem with the

fundamental matrix

J, (*)
+ a+1 a+1
| ‘ (3.16) v (e,8,6) = exp{ g (e -8 ), 821
and with solution operator
+ 1 (t -1 a
(3.17) (G gd,(/€))(e) = 2 i v, (t.8,6)v (s,8,6)8 @, (s,c0as, t > 8.

P




The solution of (3.15) is
+ +
(3.18) u+ = GE ,6 (J+(') - J+(“))“+ + G€,6d+(.'e).
Since (2.39) holds and J*(t) > J+0') the operator I - G:,G(J+(') - J+(“))

is invertible on C([§,2)) for & sufficiently large. We obtain

+ -1 _+
(3.19) u+(t) = ((1 '\?e,G(J+(') - J+ﬂ“))) G

e,&d+(""”t" t> 6.

+.
(eed+(‘:€))(t)

To get a solution on (1,%] we solve the termined - .iva problem
(3.20) e = 23 (t)u, + t2d (t,€) A
* + + + 0
(3.21) u+(5) = u+(6).
and set (9:6+(°,e))(t) 1= ;+(t) for t < &, %e is an operator on ([1,*]

and since the eigenvalues of J_(t) have strittly positive real part
+

(3.22) leel[1;_] < const
holds and because of (2.344), (2.35)
[}
+ + . i+ .
(©.d (= /€)) (L) =i£0 ((6] 513, (4) = T (*)))7G; gd (=€) (E) =
(3.23)

= —(3, ()7 'a (t,e) + O(erd (=, eNTs 1)
holds for t » 6., By continuation (3.23) holds for ¢t > 1 (See Ringhofer
(1981)).

We rewrite(3.14)(b) analoguously
(3.24) (a) cur = t%3_@)u_ + £2I_(6) - I_(=)u_ + t%_(£,€)
(3.24)(b) u_ecir >0
and define the fundamental matrix

J_=) a+1 - 604-1

(3.25) v_(t,8,6) = exe{ iy (¢ M, 831

and solution operator

tW_(tps'C)W:1(s,6,€)sud_(s,e)ds, t> 4

- 1
(3.26) (6, gi_(*,E)(L) = ;é

such that the general solution of (3.24) is




u_ = (1= 6 GI_() = I_ @) V_(,8,6) +
(3.27)
1

+ (1 - 6 g3 () =T =IN76

e’sd_(.le)

r
for £ € C - and t» 8. We call the first term on the right hand side of

(3.27) ¥ _(t,8,6) and the second GP (t,€). Obviously
(3.28) V_68.e) =1 , ¥ (=8,) =0, u (5,€) =0
hold. ﬁ_ has a boundary layer at 6, The homogenous problem {3.14)(b) has

a fundamental matrix E_(t,e) such that

-
2 a+1_1))

(3.29) (@) B_(1,e) =TI, () 1P_(t,eN < c1exp(-—--e(a+1) (t

holds for t € [1,8)1 where c1:c2 > 0 (see Ringhofer (1981) and under more
general assumptions O'Malley (1978)). We set

(3.30) v (te) = V_(£,8,€09 (8,e), t> 1.

Since ;_(G,C) ='$_(6,e) we obtain ;_ = 3_ and the boundary layer has been
shifted from § to 1. On (1 + O(e|&ne|),®] the matrix ;_ is smooth.

Another particular solution is

(3.31) Wt = 25V ee N s,08% (s,60as, €6 (1,80,
- 1
~ ~d <, a+1 _a+1
Since Ry_(t,e)y_ (s,e)l < c, exP(ETE:TT (t -s )) holds on [1,8] we
derive
(3.32) lup-(O,e)I[1'6] < constld+(',e)l[,'6).
Setting
(3.33) up_(t,&) = (8.a_(*.€))(t) := v_(t,é,e)up_(G.s) + up_(t.e)
we obhtain u_ = ; and
P_ P_
(3.34) 1671 < const

€ [1,»)
because on [1,8) we use (3.32) and on [§,%] we use estimate (3.33) and

(3.27). As qeneral solution of (3.14)(b) we take




(3.35) u_(£,€) = ¥_(t,€)5 + (87a_(*,€))(t), t 21 |

and we find

SR

u_(£,6) = _(£,€)(@ + - (ma_(1,en - 3TN w1a ke +
(3.36)

a
+ ogeta_(+,€)0 ) o))

Attt e e e it

uniformly on [1,”}].

+
)
A Setting 6_ = € |we write the solution of (3.12), (3.13) as
ee
r
0 -1 ~ -1
(3.37) x =| L+ ee(n (A(*,€) - A(*,0))E - EE)x + °e‘ h(*,€)
v (°,€)

F where E(t) - t-cz-1(t)3'(t) has been set. (3.5), (3.9) guarantee that
H(£.€) = E N (t)(A(t,E) - A(t,0))E ~ €E(t) *+ 0 as € * 0 uniformly on
[1,%]. Therefore (I - eei(-.e))" exists on C([1,]) and is bounded

uniformly in € such that

b x(t,e) = (11 - eeiv.en"[. 0 J)(t)c +

' v_(e,€

{3.38) .
- 4

+ ((I - eex(’:e))-1°eg-1h(°le”(t)' t 21 1

r
holds for L eC .
ro -1 a
(3.39) y(t,c) = Z(t,E):I p=-A (t,0)h(t,e) + 0(*:|h('.*=)l[1 .]). t?21 j
L *- ’
!
* 'i holds where Z(t,e)[}o :]is the boundary layer term (at t = 1) fulfilling the
! r

* r
o estimate (3.29)(b) and p € C . This is proven by using the geries

expansion of (3.38).
Returning to the coupled problem (3.1), (3.2), (3.4) we assume that

(3.40) A,B,C,D,f,g € Co([1,%]) uniformly in €.




From (3.39) we get for fixed z € C;([1,'])

y(t,e) = X(t,e’[lo-]p - 5-1(t:0)(8(t.0)2(t.€) + £(t,0)) +
r

{3.41)
veatMaw + ealPaw
where Léi’ = C;([1.°]) + c({1,]) and |Lél)|?,'.] € const, i * 1,2,

Inserting (3.41) into (3.2) gives

(3)

z = £(D(t,0) - c(,00A” ' (£,00B(¢,0))z + t%e(L]

z)(t) +

(3.42) (4)

a a 0
2@ ) + (C(t,S)Z(t.E)[I ]p + g(t,€)),
r

z @€ C([1,%]).

Again the operators Léj)

: C;([‘.“]) + C([1,]), 3 = 3,4 are uniformly (in
€) bounded.

Setting D(t,€) = D(t,€) = C(t,€)A” ' (t,€)B(t,€) and assuming that
(2.14), (2.18b) holds for D(®,0) we can solve
(3.43) z' = t"D(t,00z + tog(t,e), z e clm.“l)

by using the theory developed by de Hoog and Weiss (1980a,b). We obtain for
Eec

r

z = (I-E,HE, (B(*,0) - 5(-,0))52)'10(-.6)[13 ]E +
(3.44)
F(I-E.HE- 1 (D(*,0) = D(=,0))1E.) TE_HE. g(*,€), > 8
2872 2 2672
where H6.¢(t,5) are defined in (2.26), (2.24) resp. and § is sufficiently
large. The right hand side of(3.44) can be continued to [1,8] and we obtain

(3.45) z(t,€) = om[}ﬂ]c + (Tg(e,€))(t), ¢ 21
r
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where T : c({1,%]) * c;([1,°1) and ll'l[1 ] < const. Applying this to
’

(3.42) gives

~

b 4

z(t ,€) = ¢m[r° ]E + oMLz + (Ll +

(3.46)
+ (Pg(e,e))(t) + (F(c<-.e)2<-,e{g .])(t)p
r

(3),0
e (1,*

(r - erLés,)-1 exist as operators on c;([1,°]) for € sufficiently small

rL::3) . C;([1.“1) + c;([1’-]) and 1L < const. Therefore

and - 0 -i
z(t,€) = Q(tl[} ]5 + (F'(g(*,0) ~ C(*,0)A "(°,0)£(*,0)))(t) +

x
(3.47)

+ (PC(',e)Z(-,e)[:I" ])(t)p + 0(€).
b o

Using the exponential decay of Z(t,e)(}o

]and the definition of “6 it is
r

easy to show that
L ] L ) o =
(3.48) ITc(e,e)]( .e)[lr:]l“',] o(e).

So we obtain
Theorem 3.1. Let the given assumptions on A,B,C,D,f,9 hold and assume that

the (r_ x ;_) x (r_x ;;)-matrix

zm[r" :] z(1)0}(1)'5"(0)3(0)0(1)[Iﬂ]T
r r

0 o(n[g]
L r. y

in nonsingular (F(€) is a (r_ + ;_) X (n+m)-matrix). Then the boundary

-~

F(0)

value problem (3.1), (3.2), (3.3), (3.4) has for sufficiently small € and




X

~

r +r
for all B(e) e R -, f,g e C;([1,“]) (uniformly in €) a unique

solution y,z. The continuity statements of Theorem 2.1 hold and

0

o(t £ + (T(g(*,0) = C(*,0)A" ' (*,01€(*,01))(t) +

(3.49) r,

z(t,€)

*_
+ 0(e), Eec

i

y(t,€) Z(t,E)[I"]p - 2" (£,0)B(t,0)z(£,0) + £(t,0)) +

r

(3.50)

r—
+ 0(e), Yec

hold uniformly in [1,%®]. y(®,e), z(®,e) are as in (2.46), (2.47) when
A(0), B(0), C(0), D(0) are substituted by A(®,0), B(*,0), C(~,0}, D(=~,0]).

The ‘'finite' problem is

(3.51) eyt = t A(t,E)y, + t B(t,E)z, + t £(t,E)
. YT I3 YT ] T '
1<¢<TT
a Q a
(3.52) z% =t C(t,E)yT + t D(t,E)zT + t g(t,€)
Y. (1,€}
T
(3.53) ree)( (1,5)) = B(€)
T
Yo (T,E)
T
(3.54) S(T,E)(ZT(T'S)) = Y(T,€)
r #;+ ~
where Y(T,E) € R s S(t,e) is a (r++r_) X (n+m)-matrix. We assume that

(2.18)(a) holds for A{(®,0). Then by proceeding as de Hoog and Weiss (1980a)
did, we find that we can use (2.52), (2.53) in order to set up the asymptotic
boundary condition (3.54). (We do not have to know E(t) explicitely since

it can be chosen such that E(t) * E1 as t * ®)., The convergence estimate

P

a+ 1 . . .
- a1 T }), ¢ > 0, which is an estimate

(2.56) holds if we add O(exp(

for the order of decay of ¢(t), to the right hand side.
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4. Quasiliner Problems.

We investigate

(4.1) ey’ = t“A(z,t)v + t“f(z,v.t.e)
a > -1
a 1€ t¢»
(4.2) z' =t q(z'y,t'€;
y(1,e) _
(4.3) | F(c)(z“,e)) = B(e)
(4.4) (}) s ccre=n

where A(z,t) is an nxn-matrix, f an n-vector, g an m-vector and we

assume that the Problem (4.1), (4.2) is quasilinear:
2t
y

for t 6 {1,2]1,¢ € [0,80] and v,z in compact sets. We get immediately

(405) = 0(5)

(4.6) f(z,y,t,0) = £(2,0,t,0).

We now assume that F(e) is a k X (n+m)-matrix (kX will be specified later)

and
1
(4.7) f,9 6 @ x (1,21 x [0,6,1) nC (1))
Now we proceed as Ringhofer (1981) did. We split F(O0) into
13
1 n m
(4.8) F(0) (52) = F,(0), + F (0}, & GR, § R
and we assume that there is an integer r, € n such that
+ -
(4.9) Fy(0)51 = Fy+(0)51 + Fy_(o)E1
where +
L O S
(4.10) E = , E.6R ,E _E€R , r =n-r
1 £ 1 1 - +

and the k x r_ matrix Py (0)(k > r_ is assumed) has maximal rank r_
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Therefore, there is a k X k matrix 2 such that

v }r_ zl }r_
ZF (0) = z =
(4.11) Y. o {her_’ 7, [Pkr_
- —
r k

holds where V is nonsingular.

The main assumption is the following. The reduced problem

(4.12) z' = tag(y,z,t,O), 1<t ¢>®
(4.13) 0 = A{z,t)y + £(z,0,t,0), 1St ¢™
y(1)y _
(4.14) 2,7(0)(] ;) = z,8(0)
(4.15) (1) e ccire=n
has an isolated solution (see Keller (1975)) y = ;, z =2z and

A+(z,t) ' 0 :}t+

A(z,t) =

(4.16) ——'0- —:—A-;"J )t-
x, ~

holds in C, = {(z,t)|0z-z(t)0 €S9, t e [1,]}, ¢ >0, where the
eigenvalues A (z,t) of A,(z,t) and A_(z,t) of A_(z,t) fulfill
(4.17) Re l+(z,t) » c, >0, (z,t) e CW

(4.18) Re X_(z,t) € =_x<0o, (z,t) @ Cw-

This gquarantees that (4.13) can be solved for z locally around z and

(4.19) y = ylz,t) = A"z, 0)€(2,0,¢,0)

holds. We now agsume that the matrix

it aihen et el el




(4.20) D = g—g(;(-),;(m.o,m + %3(2(*'),5(*'),',0)%% (z(=),=).
"l s supposed to be smooth) fulfills :
_ -1 st | o }t+
(4.21) D=RE , J-= . ‘:‘J: };;
5 L

where the eigenvalues of J+(J') have positive (negative) real parts.
Therefgore we assume that 7,F(0) is a matrix ;_ X (n+m) matrix,
zzB(O) e Rf_ and k = r_ + ;_ such that (4.12), (4.13), (4.14), (4.15) |is
well posed with respect to the number of ‘finite' boundary conditions (see
Markowich (1980a), de Hoog and Weiss (1980a,b)}. Obviously 2z, = ;(°),
Yo = y(®) are solutions of
(4.22) (a) 0 = gly,,2,.°,0}), (b) 0 = A(z_,*)y, + £f(z,,0,%,0)
and we agssume that z_ /Yy are isolated and that f(ym,zw,t,O) =0,
I(YoorZeet,0) 20, £ 28 > 1 holds. Therefore D as in (4.20) can be
calculated a priori at these roots.
Let ¥(t,€) denote the fundamental matrix of
(4.23) ev' = t'A(Z(t),t)v, ¥(1,€) = I.
We only state the existence result since the proof goes along the lines of the
proof given in Ringhofer (1981) for finite-interval problems using the linear
theory developed in chapters 2,3 of this paper.
Theorem 4.1. Let F(€) @ C([0,6)]) be a (r_+r_) X (n+m) matrix. Under the
given assumption the problems (4.1), (4.2), (4.3), (4.4) has a locally unique

solution y,z for € sufficiently small such that

y(c,e) = ¢(t.e)[}°;]t + y(t) + 0(€)
r

z(t,€) = z(t) + 0(€)




r
for some § € C holds uniformly in [1,%®].

From chapter 3 we conclude that

at+1

W(t,E)[Io]l < const.exp(—g'—(-%ﬁ-st -1)): c>0
r

holds. t-asymptotics for z(t),y(t) can be obtained from Markowich (1980a):

(4.25) 2(e) = 2= + moce)] 26 + o(vecer 2 10?)
Lr_ r_
2
for £ ec where
(4.26) $(t) = exp(;%;(ta+1-1))

holds. From (4.19) we get

- - 3y -
(4.27) Fie) = g1 + X (2o, @ieace)| 0 1E + o(vecen] 2 J1?).
9z b 4 r_
The approximating 'finite' problems are
[+ 3 [+3
» (4.28) Ey,'r =t A(zT,t)yT+t f(zT,yT,t,e)
’ 1<¢e<T
(4.29) z' = t g(y ¢ZoteE)
| - T 98t %y
4 Yo(1,€)
T
(4.30) F(e)(‘r"'e’) = B(€)
Y (T,€)
T
| (4.31) S(T,e)(zT(T'E)) Y(T,€)
’/ where S(T,€) is a (r++r+) X (n+m) matrix and Y(T,€) € R « We choose
f
i
e
-27-




oy =
[z, ,0] (1, 0] =)=
+ + oz
(4.32) S £ s(T,e) =
0 ~ ,0lg"" ;
L, .
and : *
o [ ]
(4.33) Y = v(r,e) = s|¥,
z(®)
Then we obtain
. ' y(T,€)y _ 1 = 0 2
(4.34) s(z(,r'e)) Y1 = o(g(t 5 1) + o(e)
and by using the linear stability result (2.54) we get by proceeding as
de Hoog and Weiss (1980a) did
A
Yp© ¥ (T,€)
. I I < 1g(¥!s -y
(4.35) (z'r - z] (1,7 const S(z(,r'e,) Y
for the locally unique solution Yps Zp of (4.28), (4.29), (4.30), (4.31)
such that (4.34) constitutes the convergence estimate.
As in the linear case this asymptotic boundary condition only depends on ) "4
, the reduced 'infinite' problem. |
i
]
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